تحميل Modern Deep Learning in Python torrent - GloDLS
سيل من التفاصيل عن "Modern Deep Learning in Python"

Modern Deep Learning in Python

To download this torrent, you need a BitTorrent client: Vuze or BTGuard
< حجم الخط = 2pt > تحميل هذا السيل
Download using Magnet Link

الصحة:
بذور: 3
leechers: 4
إكمال: 77 
آخر فحص: 06-01-2022 09:05:02

< لون الخط أبيض = > نقاط سمعة رافع : 7860





Write a Review for the Uploader:   15   Say Thanks with one good review:
Share on Facebook
Details
اسم:Modern Deep Learning in Python
الوصف:

Description

This course continues where my first course, Deep Learning in Python, left off. You already know how to build an artificial neural network in Python, and you have a plug-and-play script that you can use for TensorFlow. Neural networks are one of the staples of machine learning, and they are always a top contender in Kaggle contests. If you want to improve your skills with neural networks and deep learning, this is the course for you.

You already learned about backpropagation, but there were a lot of unanswered questions. How can you modify it to improve training speed? In this course you will learn about batch and stochastic gradient descent, two commonly used techniques that allow you to train on just a small sample of the data at each iteration, greatly speeding up training time.

You will also learn about momentum, which can be helpful for carrying you through local minima and prevent you from having to be too conservative with your learning rate. You will also learn about adaptive learning rate techniques like AdaGrad, RMSprop, and Adam which can also help speed up your training.

Because you already know about the fundamentals of neural networks, we are going to talk about more modern techniques, like dropout regularization and batch normalization, which we will implement in both TensorFlow and Theano. The course is constantly being updated and more advanced regularization techniques are coming in the near future.

In my last course, I just wanted to give you a little sneak peak at TensorFlow. In this course we are going to start from the basics so you understand exactly what’s going on – what are TensorFlow variables and expressions and how can you use these building blocks to create a neural network? We are also going to look at a library that’s been around much longer and is very popular for deep learning – Theano. With this library we will also examine the basic building blocks – variables, expressions, and functions – so that you can build neural networks in Theano with confidence.

Theano was the predecessor to all modern deep learning libraries today. Today, we have almost TOO MANY options. Keras, PyTorch, CNTK (Microsoft), MXNet (Amazon / Apache), etc. In this course, we cover all of these! Pick and choose the one you love best.

Because one of the main advantages of TensorFlow and Theano is the ability to use the GPU to speed up training, I will show you how to set up a GPU-instance on AWS and compare the speed of CPU vs GPU for training a deep neural network.

With all this extra speed, we are going to look at a real dataset – the famous MNIST dataset (images of handwritten digits) and compare against various benchmarks. This is THE dataset researchers look at first when they want to ask the question, “does this thing work?”

These images are important part of deep learning history and are still used for testing today. Every deep learning expert should know them well.

This course focuses on “how to build and understand“, not just “how to use”. Anyone can learn to use an API in 15 minutes after reading some documentation. It’s not about “remembering facts”, it’s about “seeing for yourself” via experimentation. It will teach you how to visualize what’s happening in the model internally. If you want more than just a superficial look at machine learning models, this course is for you.

“If you can’t implement it, you don’t understand it”

   Or as the great physicist Richard Feynman said: “What I cannot create, I do not understand”.
   My courses are the ONLY courses where you will learn how to implement machine learning algorithms from scratch
   Other courses will teach you how to plug in your data into a library, but do you really need help with 3 lines of code?
   After doing the same thing with 10 datasets, you realize you didn’t learn 10 things. You learned 1 thing, and just repeated the same 3 lines of code 10 times…

Suggested Prerequisites:

   Know about gradient descent
   Probability and statistics
   Python coding: if/else, loops, lists, dicts, sets
   Numpy coding: matrix and vector operations, loading a CSV file
   Know how to write a neural network with Numpy

WHAT ORDER SHOULD I TAKE YOUR COURSES IN?:

   Check out the lecture “Machine Learning and AI Prerequisite Roadmap” (available in the FAQ of any of my courses, including the free Numpy course)

Who this course is for:

   Students and professionals who want to deepen their machine learning knowledge
   Data scientists who want to learn more about deep learning
   Data scientists who already know about backpropagation and gradient descent and want to improve it with stochastic batch training, momentum, and adaptive learning rate procedures like RMSprop
   Those who do not yet know about backpropagation or softmax should take my earlier course, deep learning in Python, first

Requirements

   Be comfortable with Python, Numpy, and Matplotlib
   If you do not yet know about gradient descent, backprop, and softmax, take my earlier course, Deep Learning in Python, and then return to this course.

Last Updated 4/2021
يوتيوب فيديو:
الفئة:Tutorials
اللغة:English  English
إجمالي حجم:3.76 GB
تجزئة المعلومات:1640876D6BD39FC5C464B869655790A9ED46AB55
وأضاف بها:tutsnode Verified UploaderVIP
تاريخ الإضافة:2021-06-27 12:42:30
سيل مركز:Torrent Verified


تصنيفات:Not Yet Rated (Log in to rate it)


Tracker:
udp://inferno.demonoid.pw:3391/announce

هذا السيل كما قد تتبع النسخ الاحتياطي
URLآلاتleechersإكمال
udp://inferno.demonoid.pw:3391/announce000
udp://tracker.openbittorrent.com:80/announce111
udp://tracker.opentrackr.org:1337/announce2376
udp://torrent.gresille.org:80/announce000
udp://glotorrents.pw:6969/announce000
udp://tracker.leechers-paradise.org:6969/announce000
udp://tracker.pirateparty.gr:6969/announce000
udp://tracker.coppersurfer.tk:6969/announce000
udp://ipv4.tracker.harry.lu:80/announce000
udp://9.rarbg.to:2710/announce000
udp://shadowshq.yi.org:6969/announce000
udp://tracker.zer0day.to:1337/announce000


ملف قائمة: 





Comments
لا توجد تعليقات نشرت ما زال