تحميل Udemy - Unsupervised Machine Learning with Python torrent - GloDLS
سيل من التفاصيل عن "Udemy - Unsupervised Machine Learning with Python"

Udemy - Unsupervised Machine Learning with Python

To download this torrent, you need a BitTorrent client: Vuze or BTGuard
< حجم الخط = 2pt > تحميل هذا السيل
Download using Magnet Link

الصحة:
بذور: 0
leechers: 0
إكمال:
آخر فحص: 13-05-2021 21:24:14

< لون الخط أبيض = > نقاط سمعة رافع : 7860





Write a Review for the Uploader:   15   Say Thanks with one good review:
Share on Facebook
Details
اسم:Udemy - Unsupervised Machine Learning with Python
الوصف:

Description

Unsupervised Machine Learning involves finding patterns in datasets.

After taking this course, students will be able to understand, implement in Python, and apply algorithms of Unsupervised Machine Learning to real-world datasets.

This course is designed for:

   Scientists, engineers, and programmers and others interested in machine learning/data science
   No prior experience with machine learning is needed
   Students should have knowledge of
       Basic linear algebra (vectors, transpose, matrices, matrix multiplication, inverses, determinants, linear spaces)
       Basic probability and statistics (mean, covariance matrices, normal distributions)
       Python 3 programming

The core of this course involves detailed study of the following algorithms:

Clustering: Hierarchical, DBSCAN, K Means & Gaussian Mixture Model

Dimension Reduction: Principal Component Analysis

The course presents the math underlying these algorithms including normal distributions, expectation maximization, and singular value decomposition. The course also presents detailed explanation of code design and implementation in Python, including use of vectorization for speed up, and metrics for measuring quality of clustering and dimension reduction.

The course codes are then used to address case studies involving real-world data to perform dimension reduction/clustering for the Iris Flowers Dataset, MNIST Digits Dataset (images), and BBC Text Dataset (articles).

Plenty of examples are presented and plots and animations are used to help students get a better understanding of the algorithms.

Course also includes a number of exercises (theoretical, Jupyter Notebook, and programming) for students to gain additional practice.

All resources (presentations, supplementary documents, demos, codes, solutions to exercises) are downloadable from the course Github site.

Students should have a Python installation, such as the Anaconda platform, on their machine with the ability to run programs in the command window and in Jupyter Notebooks
Who this course is for:

   Scientists, engineers and programmers interested in data science/machine learning

Requirements

   Basic knowledge of Linear Algebra including vectors, matrices, transpose, matrix multiplications, linear spaces
   Basic knowledge of Probability and Statistics including mean, covariance, and normal distributions
   Ability to program in Python 3
   Ability to run Python 3 programs on local machine in Jupyter notebooks and command window

Last Updated 4/2021
يوتيوب فيديو:
الفئة:Tutorials
اللغة:English  English
إجمالي حجم:4.22 GB
تجزئة المعلومات:E1148044F486D256485E328F1C8EA427BB36522C
وأضاف بها:tutsnode Verified UploaderVIP
تاريخ الإضافة:2021-05-14 04:24:02
سيل مركز:Torrent Verified


تصنيفات:Not Yet Rated (Log in to rate it)


Tracker:
udp://inferno.demonoid.pw:3391/announce

هذا السيل كما قد تتبع النسخ الاحتياطي
URLآلاتleechersإكمال
udp://inferno.demonoid.pw:3391/announce000
udp://tracker.openbittorrent.com:80/announce000
udp://tracker.opentrackr.org:1337/announce000
udp://torrent.gresille.org:80/announce000
udp://glotorrents.pw:6969/announce000
udp://tracker.leechers-paradise.org:6969/announce000
udp://tracker.pirateparty.gr:6969/announce000
udp://tracker.coppersurfer.tk:6969/announce000
udp://ipv4.tracker.harry.lu:80/announce000
udp://9.rarbg.to:2710/announce000
udp://shadowshq.yi.org:6969/announce000
udp://tracker.zer0day.to:1337/announce000


ملف قائمة: 





Comments
لا توجد تعليقات نشرت ما زال